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Abstract

The analysis of periodic unsteady incompressible flow inside compliant vessels is of considerable interest for the

simulation of blood flow in arteries. Weakly coupled fluid-structure interaction (FSI) models seem to be most suitable

for this purpose. For weakly coupled solution methods, however, often convergence may not be achieved for compliant

vessels with an axial length scale that is large compared to the characteristic radius. In this study, a time-periodic

method for weakly coupled FSI models is presented. Approximate solutions of subsequent time-periods are obtained

using the solution of the previous time-period as an initial solution. For the first period, not only suitable boundary

conditions are derived from a 1-D wave propagation model, but also the initial axial pressure distribution. The time-

periodic method was successfully applied to straight, curved and bifurcating geometries. The new approach proves to

have a far better computational stability than weakly coupled methods based on timestep-wise coupling, especially in

vessels with a length that is an order of magnitude larger than the radius.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Computational fluid dynamics (CFD) is a valuable tool for gaining insight into the hemodynamics of the vascular

system. CFD models can be used to investigate the relationship between local hemodynamics and vascular

(dys)function (Taylor et al., 1996), but can also be applied for improvement and validation of clinical measurement

methods (Wolters et al., 2005).

In compliant complex geometries, 3-D FSI may provide accurate descriptions of deformation and flow phenomena.

However, such models are very time consuming due to a high demand on computing resources. Consequently, 3-D

computational methods are mostly applied to small segments of the arterial system (Taylor et al., 1998; Gijsen et al.,

1999a, b; van de Vosse et al., 2003). The effects of the distal and proximal part of the section then need to be

incorporated by means of proper boundary conditions, e.g. formulated in O.D.E.s of lesser geometrical scale, as in wave

propagation (1-D) or lumped parameter (0-D) models. So, generally, the modelling of the fluid-structure interaction

(FSI) of blood flow in arteries requires the combination of different types of models (Formaggia et al., 1999, 2001;

Quarteroni and Veneziani, 2003; Fernandez et al., 2005), each with their own spatial dimensions (Fig. 1).
e front matter r 2009 Elsevier Ltd. All rights reserved.
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Fig. 1. Schematic representation of a geometric multi scale model.

B.W.A.M.M. Beulen et al. / Journal of Fluids and Structures 25 (2009) 954–966 955
Lumped parameter models, such as the Windkessel model, relate pressure to flow: pðtÞ ¼ pðqðtÞÞ. A combination of

lumped parameter models and 1-D wave propagation models may be applied for the global representation of the

circulatory system (Olufsen et al., 2000). Wave propagation models are often applied to describe the propagation of

pressure and flow waves through large sections of the arterial system (Hughes and Lubliner, 1973; Olufsen et al., 2000),

requiring a significant smaller amount of computing resources than 3-D FSI models. These models can be utilised to

provide the 2-D/3-D models with boundary conditions, either at the inlet or outlet (Vignon-Clementel et al., 2006), but

also on a larger section of the model (Reuderink et al., 1993).

Mathematically, FSI models are based on the 3-D Navier–Stokes equations, describing the fluid motion, and the

equations of motion for solids describing the vessel wall (structure) motion and deformation. A coupling has to be

implemented between the fluid problem and the solid problem by means of dynamic and kinematic interface conditions.

The pressure and shear load from the fluid side of the fluid–solid interface has to be in equilibrium with the traction at

the boundary of the solid at the fluid–solid interface (dynamic interface condition). In addition, the velocity of the solid

must equal the fluid velocity at the fluid–solid interface (kinematic interface condition).

In fully coupled solution methods, the fluid and the solid problem are solved simultaneously (de Hart et al., 2003; van

Loon et al., 2004; Giannopapa, 2004). Typically, in arterial FSI problems, the eigenvalues of the system matrices

associated with both problems are more than nine orders of magnitude apart, resulting in a badly conditioned total

matrix for the total system. Consequently, these methods can be computationally expensive and require large computer

resources.

In partitioned FSI approaches (Matthies and Steindorf, 2002), the fluid and the solid problem are solved sequentially,

using standard methods for both domains. The fluid and solid problems are then coupled through the interface

conditions described above.

In decoupled solution methods, the fluid and solid problem are solved independently. In the case that the wavelength

of the pressure pulse travelling through the vessel is large compared to the section of interest, the pressure distribution

inside the vessel may be assumed spatially constant and can be chosen equal to the prescribed outlet pressure, which e.g.

can be determined from a 0-D or 1-D model. For arteries with a large length-to-radius ratio, this decoupled procedure

may be inadequate due to a non-negligible axial pressure drop. 1-D models, however, can also be applied to prescribe

the pressure distribution inside the vessel (Reuderink et al., 1993). Although this approximation can be more

appropriate, it becomes inaccurate for the case that the 1-D model is incapable to adequately represent the pressure

gradients due to complex flow phenomena (e.g. in complex geometries).

For arterial FSI problems, partitioned schemes are preferred. A partitioned approach is likely to be feasible because

the flow-induced pressure variations, being in the order rV2, are an order in magnitude smaller than the amplitude of

the pressure wave travelling through the arterial system. So, inaccuracies in the velocity field will hardly influence the

wall motion. In partitioned schemes, weakly and strongly coupled approaches exist.

In weakly coupled methods, the flow-induced pressure is transferred timestep-wise to the solid as a normal stress at

the fluid–solid interface. This induces the wall motion. Only one solution of solid and fluid problem is required per time

step, making it appealing in terms of computational effort. Two problems, typical for weakly coupled methods, may

arise. First, in the weakly coupled approach no convergence may be achieved due to the so-called added mass

effect, which has been analysed by amongst others Forster et al. (2007) and Causin et al. (2005), and is found to be

dependent on the density/mass ratio between solid and fluid. However, in specific cases, it can be justified to employ a

quasi-stationary approach for modelling the solid, averting convergence problems related to the added mass effect

(Section 2.1.2). A second problem that may arise is that the solution of the fluid problem is always one step behind of

the solution of the solid problem. Due to the phase error between fluid and solid computation, a temporal

computational instability, which cannot be avoided by refinement of the spatial and temporal discretisation, can occur.

For tubes with a high length-to-radius ratio this can lead to errors in the total volume of the domain considered that are
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of equal order as the flow flux during a single time step (Rutten, 1998), causing the method not to converge, either due

to divergence of the fluid or solid computation.

In general, convergence issues in partitioned schemes can be overcome by strongly coupled methods, which apply

sub-iterations and under relaxation for solution of the solid and fluid problem for each time step to converge to the

solution of the fully coupled system (Fernandez et al., 2006; Fernandez and Moubachir, 2005; Deparis et al., 2006). The

major drawback of these kinds of methods are non-robustness and the increasing amount of computational costs.

An alternative partitioned scheme is based on sequential coupling, as applied in the SCAFSI method, which was

recently introduced by Tezduyar et al. (2008a, b). Test computations performed on cerebral and abdominal aortic

aneurysm geometries showed improved convergence properties, without requiring a significant increase in computa-

tional demand.

In this study, a similar time-periodic approach for weakly coupled 3-D FSI is presented, which enables the modelling

of time-periodic incompressible flow inside clinically relevant compliant geometries, i.e. straight and weakly curved

vessels, with a high length-to-radius ratio, and bifurcations.

The second section of this paper starts with an overview of the equations, which describe the flow of an

incompressible fluid through a compliant vessel and the deformation and motion of the vessel wall (Section 2.1). Next, a

description of the time-periodic coupling method, as proposed in this study, is given in Section 2.2. The implementation

of the models in the computational framework is discussed in Section 2.4. In Section 2.5, a series of simulations is

presented, which is used to study the convergence properties of the time-periodic coupling method. The results of this

analysis are presented in Section 3. Finally, two applications of FSI-computations are presented in Section 4. The

discussion and conclusions are given in Sections 5 and 6.
2. Materials and methods

2.1. The 3-D model

Consider a spatial domain O and its boundary G as illustrated in Fig. 2. The spatial domain is subdivided into a fluid

domain, Of , with boundary Gf , subdivided into Gfi, Gfo and Gfs and a solid domain, Os, with boundary Gs, subdivided

into Gsi, Gso and Gsf ¼ Gfs. The boundary that separates the fluid and the solid domain is indicated by Gfs.

The blood velocity and pressure distribution in the vessel are computed by solving the Navier–Stokes equations on the

deforming fluid domain Of based on the arbitrary Lagrangian–Eulerian (ALE) method (Donea et al., 1982). The

displacements in the vessel wall are computed by solving the equations of motion and continuity on the solid domain Os.

2.1.1. Blood flow

Denoting the fluid velocity by vðx; tÞ (with x 2 Of ; t40), the pressure by pðx; tÞ and the constant fluid density by r, the
ALE formulation of the Navier–Stokes equation for an incompressible fluid reads:

r
@v

@t

����
OðtÞ
þ rðv� wÞ � rv� r � r� f ¼ 0 in Of ;

r � v ¼ 0 in Of ;
(1)
Fig. 2. Simple compliant tube.
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with r the Cauchy stress tensor, w the velocity of the fluid domain and f the external body forces per unit of volume. In

this study the body forces are assumed to be zero; for example, influences of gravity are neglected. The time derivative is

defined with respect to the moving grid. Considering blood as a Newtonian fluid, the Cauchy stress tensor is defined as

r ¼ �pIþ 2ZD, (2)

with p the fluid pressure, Z the viscosity I the identity tensor and D ¼ 1
2
ðrvþ ðrvÞTÞ the rate of deformation tensor.

For the boundary conditions, at the inflow boundary, Gfi, a Womersley velocity profile vnðx; tÞ corresponding to a

flow qiðtÞ is prescribed in the normal direction. At the outflow boundary, Gfo, the normal stress is prescribed in terms of

a given pressure, poðtÞ, and at the fluid/solid boundary a no-slip condition is prescribed, the fluid velocity is equal to the

grid velocity w

v� w ¼ vnðx; tÞn on Gfi;

r � n ¼ pon on Gfo;

v ¼ w on Gfs;

(3)

with n being the outward boundary normal. For more detailed information on the equations applied, we refer the

reader to van de Vosse et al. (2003).
2.1.2. Wall deformation

The displacements in the vessel wall, u, are computed by solving the equations of motion (with no body forces) and

continuity on the solid domain Os:

r
@2u

@t2
þ r � r ¼ 0 in Os; detðFÞ � 1 ¼ 0 in Os, (4)

with r the Cauchy stress tensor and F ¼ ðr0xðtÞÞ
T the deformation gradient tensor defining the deformation between

the reference state O0 and the current state OðtÞ.
The vessel wall is considered a linearly elastic neo-Hookean material for which the Cauchy stress tensor is defined by

r ¼ �pIþ GðB� IÞ, (5)

with p the hydrostatic pressure, I the unit tensor, G the shear modulus and the Finger tensor B, defined as B ¼ F � FT.

The shear modulus is assumed to be constant. Also other, non-linear, material behaviour can be used without loss of

generality.

Under the assumption that the vessel wall thickness, h, is small compared to the vessel radius, a0, the momentum

equation in radial direction reduces to

rh
@2ur

@t2
¼ p�

sWWh

a0
. (6)

The left hand side of equation (6) can be approximated by

rh
@2ur

@t2
� rho2ur ¼ Oð10�4 PaÞ. (7)

For arteries, the internal pressure is typically of Oð104 PaÞ. Therefore the inertial term in the momentum Eq. (4) may be

neglected: circumferential stresses, sWW, are balanced by the internal (transmural) pressure p. A quasi-stationary

approach is applied for modelling the solid.

At the cross-sectional surfaces at the inflow and the outflow boundaries, Gsi and Gso, respectively, all displacements

are constrained. At the fluid/solid boundary, the pressure and shear load from the fluid is applied as a traction

boundary condition for the solid. For convenience, the shear load will be neglected in this study, since for the intended

application, the influence of shear forces is negligible. So, at the fluid/solid boundary, Gfs, the normal stress is prescribed

in terms of a given pressure load, pw. The outer wall boundary, Gsw, is considered stress free in normal direction:

u ¼ 0 on Gsi [ Gso;

r � n ¼ �pwn in Gfs;
(8)

again with n the outward boundary normal.
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2.1.3. Grid motion

The velocity of the fluid mesh, w, is determined by solving a linear elastic deformation of a compressible solid

problem defined on the fluid domain, where the displacement of the wall is used as an essential boundary condition in

Gfs and where the displacement in Gfi and Gfo equals zero. By choosing the finite element space for this linear elastic

problem equal to the one used for the fluid solver, isoparametric elements are ensured for all time steps.

2.2. Time-periodic weak coupling

In this study, the existing decoupled and weakly coupled methods for FSI are compared to the newly introduced

time-periodic coupling method. In the time-periodic approach, the flow-induced pressures are transferred time period-

wise to the solid. This is allowed, as long as periodic functions are applied as boundary conditions, and the solution is

assumed to be periodic accordingly. The algorithm is as follows.

Given a pressure pk�1ðx; tÞ on the time interval ½kT ; ðk þ 1ÞT �, for each time-step tn in the time interval ½kT ; ðk þ 1ÞT �:
(i)
 solve the solid problem to find the displacement ukðx; tnÞ ¼ uðpk�1ðx; tnÞÞ;

(ii)
 calculate the grid velocity, wkðx; tnÞ, of the fluid domain,
(iii)
 solve the fluid problem to find the velocity, vkðx; tnÞ, and pressure distribution, pkðx; tnÞ.
The algorithm continues until pkðx; tÞ converges to a limit function pðx; tÞ within a predefined tolerance. The algorithm

is initiated with the pressure distribution obtained from a 1-D wave propagation model, which also provides the

boundary conditions for the fluid problem.

For the weakly coupled method, the flow-induced pressure are transferred timestep-wise to the solid:

ukðx; tnÞ ¼ uðpkðx; tn�1ÞÞ. Again, the boundary conditions for the fluid problem are provided by the 1-D wave

propagation model. For the decoupled method, not only the boundary conditions are derived from the wave

propagation model, but also the axial pressure distribution which drives the wall motion: ukðx; tnÞ ¼ uðp1Dðx; tnÞÞ.

2.3. 1-D model

For the 1-D approximations, the time-domain based wave propagation model as introduced by Bessems et al. (2007)

is applied. Contrary to present models (Stergiopulos et al., 1999; Formaggia et al., 2001), this model allows phase

differences between the boundary layer flow and the flow inside the inviscid core of the vessel. This results in proper

estimates for the friction and non-linear term in the momentum balance (Bessems et al., 2007), providing an accurate

description of wave propagation (Bessems et al., 2008).

At the outlets of the 1-D model, three-element Windkessel models, with parameters R1, R2 and CT (Fig. 1), are

defined to relate the outlet pressure to outlet flow (Stergiopulos et al., 1999). The value of the terminal resistance, R1, is

obtained by modelling minimal reflections at the outlets

R1�Z0 ¼

ffiffiffiffiffiffi
L0

C0

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhE

2p2ð1� n2Þa50

s
, (9)

with L0 ¼ r=a0 representing the local inertance, C0 the local compliance and Z0 the local impedance at the distal end of

the vessel. The vessel wall thickness and radius are, respectively, denoted by h and a0, E is Young’s modulus, n is the

Poisson ratio and r is the fluid density. The peripheral resistance, R2, and the compliance, CT , are adjusted such that

pressures within the physiological range are obtained and a physiological pressure drop is achieved

R1 þ R2 ¼
p̄

q̄
and CT ¼ t=R2, (10)

in which p̄ is the desired mean pressure and q̄ is the mean flow prescribed at the inlet. The time constant t ¼ 1:5 s was
found to result in a physiological pressure drop.

2.4. Implementation

The 1-D wave propagation model is applied to a 1-D mesh representing the centreline of the geometry considered.

Locally, at a smaller section of the 1-D model, a 3-D computational domain is defined at which the 3-D FSI model is

implemented. The equations from both models are solved successively.
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To solve the equations resulting from the 1-D wave propagation model a spectral element method is employed, as

described by Bessems et al. (2007). This results in a solution for the pressure, p̂ðn; tÞ, and the flow, q̂ðn; tÞ, in each node,

xi, of the 1-D mesh, 1pipN. N is the total number of nodes in the 1-D mesh.

To apply the pressure distribution from the 1-D model to the 3-D section, the pressure at the fluid–solid interface is

set equal to the pressure at the nearest point at the centreline, for each node at the fluid–solid interface. The pressure at

the points at the 3-D centreline is determined from the 1-D solution using a linear interpolation (Fig. 3). The linear

interpolation results in p̂ðwc; tÞ and q̂ðwc; tÞ, on which the points at the 3-D centreline are indicated by wc ¼ ðc1; . . . ;cM Þ.

At the entrance of the 3-D segment, the flow is prescribed according to qðcinÞ ¼ q̂ðxinÞ, at the exit, the normal stress is

prescribed according to ðr � nÞout ¼ p̂ðxoutÞn.
For bifurcating geometries, it is assumed that the pressure gradients within the centre section are negligibly small,

such that in the centre section of the 3-D bifurcation, a uniform pressure, equal to the pressure in the 1-D bifurcation

can be prescribed.

In the 3-D FSI model a first order Euler-implicit discretisation scheme is used for temporal discretisation of the

equations presented in Section 2.1. The equations are consecutively linearised using the Newton–Raphson method,

discretised and solved on a mesh consisting of 27-noded, isoparametric tri-quadratic Crouzeix–Raviart hexahedrons

using the SEPRAN finite element package (Segal, 2004).
2.5. Convergence analysis

An idealised model of the common carotid artery (CCA) is used to study the time-periodic approach. The CCA

geometry is modelled as a straight vessel with a radius of a0 ¼ 3mm and a wall thickness of h ¼ 0:5mm. The value of

the shear modulus G of the wall is prescribed to be 300 kPa. This value is chosen such that the maximum of the radial

deformation for the physiological pressure range is approximately 5% (Milnor, 1989). For the blood flow a Newtonian

fluid is used with a density of 1:06� 103 kgm�3 and a dynamic viscosity of 4:9� 10�3 kgm�1s�1.

At the inlet of the 1-D model a smooth waveform resembling CCA flow is prescribed. The outlet of the 1-D model is

terminated by a three-element Windkessel model, with parameters R1 ¼ 3:6� 1012 kgm�4 s, R2 ¼ 8:6� 1012 kgm�4 s

and CT ¼ 1:2� 10�13 m4 s2 kg�1. In Fig. 4, the prescribed flow waveform and the resulting pressure waveform at the

exit of the 1-D model are presented.
x
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Fig. 3. Schematic overview of the 1-D and 3-D domain. The � indicates 1-D nodes and the � indicates 3-D centreline nodes. For each

node located at the fluid–solid interface, for example xw, the nearest point located at the centreline, indicated by xc, is determined. The

pressure in xw is set equal to the pressure in xc, which is determined from the 1-D pressure by a linear interpolation.
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of the 1-D model is shown at the right.
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For the input flow, with geometrical and fluid properties as shown above, the Reynolds number, defined as

Re ¼ rva0=m, ranges from 100 to 800, which is in the physiological relevant range (Ku, 1983).

The geometry described above is defined at p ¼ 0mmHg. Before the FSI calculations are initiated the pressure load

on the wall is slowly increased toward diastolic pressure level. This prevents a sudden wall motion, due to a large

pressure step, at the first time step.

To study the convergence properties of the time-periodic approach, an FSI-computation has been performed for

t 2 ½0; 5T � on a section of the CCA with a length L ¼ 40a0. A discrete L2-norm is applied to determine the convergence

rate

� ¼ kp̄nþ1 � p̄nk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ðp̄i
nþ1 � p̄i

nÞ
2

r
, (11)

in which the nodes in the fluid domain are indicated by i. p̄n Is the mean value of the pressure solution from the 3-D

Navier–Stokes equation, during period n.

To compare the performance of the time-periodic, decoupled and weakly coupled methods, FSI-computations were

performed for vessel geometries with increasing length-to-radius ratio (L=a0 ¼ 10; 20; 40; 50 and 60). Convergence of

inlet pressure (pi) and outlet flow (qo) solutions of the decoupled and time-periodic method are compared by means of

the discrete L2-norm

�q ¼
qo;dc � qo;tp

qo;tp

�����
�����
2

and �p ¼
pi;dc � pi;tp

pi;tp

�����
�����
2

, (12)

in which the subscripts dc and tp, respectively, indicate the decoupled and time-periodic approach.
3. Results

The results of the convergence analysis are presented in Fig. 5. They clearly show a monotonic decrease of the

residual � with increasing period number n. All pressure and flow solutions presented in the remainder of this study were

obtained by performing computations for five periods (for n ¼ 4, � ¼ Oð10�4Þ).

It was found that the weakly coupled approach is applicable to vessels up to L=a0 � 10, for vessels of higher length

the computations diverge. The time-periodic and the decoupled methods are successfully applied to vessels up to

L=a0 ¼ 60. No significant differences with respect to computation time and convergence between both methods were

found, which is to be expected, since for both methods equal solution methods are applied and only minor differences in

prescribed boundary conditions exist.

In Fig. 6 the results of the FSI-computations for the inlet/outlet flow and inlet/outlet pressure, for the straight section

of L ¼ 20a0 and 50a0 of the CCA are presented. For each calculation method, respectively, the inlet flow and the outlet
1 2 3 4 5

10-1

10-2

10-3

10-4

10-5

10-6

10-7

Period n

Fig. 5. Convergence analysis applied on the pressure solution of a time-periodic FSI-computation performed on a straight section of

the CCA with a length L ¼ 40a0.
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pressure are equal since these are the imposed boundary conditions. Generally, for short sections (L ¼ 20a0) minor

differences (�q ¼ 3� 10�2, �p ¼ 3� 10�3) occur, whereas for longer sections (L ¼ 50a0), more significant differences

(�q ¼ 4� 10�1, �p ¼ 1� 10�1) in solution are found between the decoupled and time-periodic approach.

Deviations between 1-D and 3-D flow and pressure solutions are present which can be caused by the difference in

solid model applied for the 1-D and 3-D computations. A closer analysis of the wall motion shows a maximum

difference of 2% in wall distension between 1-D and 3-D model, which indicates that the 3-D solution offers a sensible

solution for the FSI problem.
4. Applications

In vivo, the CCA and most other arteries are not straight, but have a significant curvature. MR and ultrasound

imaging studies of CCA morphology have shown that the ratio of curvature, d (d ¼ a0=R), for the CCA can range up to

3% (Tortoli et al., 2003). Fluid flowing through a curved vessel experiences a centripetal force. The fluid in the core of

the tube is forced towards the outside of the bend, which results in secondary flows and thus an energy loss. Therefore,
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Fig. 7. Left: geometry for the curved section of the CCA and right: the carotid bifurcation.
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Fig. 8. Results of the time-periodic FSI-simulation performed on the curved vessel. The flow field is visualised at three positions

(p1; p2 and p3) at peak systolic time t1 and end diastolic time t2. The contour plots show the axial velocity distribution, the vector plots

show the secondary velocity profiles, I denotes the inside of the bend, O denotes the outside, the dashed line indicates the position of

the vessel wall at the end diastolic time.
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the axial pressure drop in a curved tube is larger than the pressure drop in a straight tube of equal length (Dean, 1928).

Besides an axial pressure gradient, also cross-sectional pressure gradients are present: the pressure-load distribution on

the vessel wall is non-uniform due to 3-D flow phenomena. Furthermore, the arterial tree is a highly bifurcating

network. As in curved vessels, also in bifurcations, non-uniform pressure-load distributions occur, possibly influencing

the wall motion.

For both curved and bifurcating geometries, the performance of the time-periodic coupling method is compared to

the performance of the decoupled approach.

For the curved geometry, a curved section of the CCA with a length of 40a0 and a curvature ratio of 3% is

considered (Fig. 7). For vessel properties and boundary conditions, equal values as presented in Section 2.5 are

applied.

For the bifurcating geometry, the carotid bifurcation is modelled as an idealised symmetric planar bifurcation

(Fig. 7). The inlet trunk of the bifurcation has a radius of 3mm, and a length of Li ¼ 4a0. The radius of the outlet trunk

is chosen such that the average shear rate at the outlet is equal to the average shear rate at the inlet, the length of the

outlet trunks is equal to Lo ¼ 8a0. The angle between both outlet trunks is 1201.
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At the inlet of the 1-D bifurcation model a smooth flow waveform, resembling the CCA flow is prescribed. At the

outlets, the 1-D model is terminated by a three-element Windkessel model, with parameters R1 ¼ 6:5� 1012 kgm�4 s,

R2 ¼ 8:2� 1011 kgm�4 s and CT ¼ 1:8� 10�14 m4 s2 kg�1 (Eqs. (9) and (10)).
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Fig. 9. Results of the FSI-computations for the inlet/outlet flow and the inlet/outlet pressure calculated by the 1-D model, the

decoupled approach and the time-periodic approach for the curved section of the CCA.
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Fig. 10. Results of the time-periodic FSI-simulation performed on the bifurcation. The flow field is visualised at three positions
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Fig. 11. Results of the FSI-computations for the inlet/outlet flow and the inlet/outlet pressure calculated by the 1-D model, the

decoupled approach and the time-periodic approach for the bifurcation geometry.
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The flow field in the curved vessel geometry, as calculated using the time-periodic coupling method clearly shows the

development of the asymmetric axial velocity distribution and the presence of the secondary velocity field (Fig. 8). For

the decoupled and time-periodic approach, a comparison (Fig. 9) of the inlet/outlet flow and inlet/outlet pressure,

indicates deviations between 1-D and 3-D flow and pressure solutions, which can be caused by the difference in the solid

model applied for the 1-D and 3-D computations. Differences between decoupled and time-periodic coupling method

are found to be �q ¼ 2� 10�1 and �p ¼ 4� 10�2.

For the bifurcating geometry, the flow field calculated using the time-periodic coupling method is presented in

Fig. 10. In the outlet trunks, the characteristic asymmetric axial velocity distribution and secondary velocity field are

clearly visible. In Fig. 11 the results of the FSI-computations for the inlet/outlet flow and inlet/outlet pressure for the

carotid bifurcation are presented. The graphs in Fig. 11 show no significant differences between 1-D and 3-D,

furthermore, also no significant differences (�q ¼ 5� 10�6, �p ¼ 7� 10�8) in solution arise for the decoupled and time-

periodic coupling method.
5. Discussion

The weakly coupled time-periodic FSI method is successfully applied to straight, curved and bifurcating geometries.

Approximate solutions of the pressure distribution of subsequent time-periods are obtained using the pressure solution

of the previous time step as an initial condition. Contrary to most present models, 1-D models are not only applied for

supplying boundary conditions, but also as an approximation for the initial axial pressure distribution inside the 3-D

section. The convergence analysis shows good results, but since no theoretical results are available for the time-periodic

approach, no comparison with literature can be made. Additionally, it should be noted that the proposed algorithm is

not suitable for transient analysis, since it is based on the assumption that periodic functions are applicable for the

boundary conditions.

The time-periodic coupling method has been compared to the decoupled and weakly-coupled approaches. The time-

periodic coupling method was found to offer an improved computational stability compared to the weakly-coupled

approach. For the weak coupling method, convergence problems already arise for vessels with a length-to-radius ratio

higher than 10, which for the time-periodic approach only occurs for vessels with a length-to-radius ratio above 60.

These numbers ð10; 60Þ are probably related to the wave length of the pressure wave. Decreasing the step size of the

temporal discretisation from 0.01 to 0.001 s did not result in an improvement with respect to the computational

stability. Since in this study, a quasi-stationary approach is applied for modelling the solid, added mass instabilities are

not believed to be responsible for the convergence problems in the weakly-coupled approach. More likely, phase errors

in the wall motion estimate are. For vessels with a length-to-radius ratio above 60, no convergence is achieved, both for

decoupled and time-periodic approaches. Additional simulations, involving only an isolated solid domain, have shown
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that the non-convergence is occurring in the solid calculation itself and is not a result of coupling issues. Although this

non-convergence is odd, and should be solved, it is of minor relevance for this study, since for in vivo application, the

simulation of vessels with a length-to-radius ratio ranging between 10 and 50 is of interest. Due to bifurcating and

tapering, straight vessels with a higher length-to-radius ratio are hardly present; therefore, we believe that the

simulation of these kind of geometries is not very relevant.

Both the decoupled and time-periodic coupled methods are successfully applied to geometries with a high length-to-

radius ratio. The computations show that differences in solution between decoupled and time-periodic approach

increase for geometries with increasing length-to-radius ratio. The differences are probably caused by the fact that for 1-

D and 3-D models different material properties and geometry are applied for calculating the wall motion, resulting in

differences in wall distension. This will have the most notable effects in vessels of high length-to-radius ratio.

For high length-to-radius geometries, the SCAFSI method, as introduced by Tezduyar et al. (2008a, b), probably also

improves convergence properties, since the proposed time-periodic method and the SCAFSI method have similarities.

A common step in both methods is that for the initial iteration, the wall motion is driven by a reference pressure signal.

However, in the SCAFSI algorithm, this reference pressure is assumed spatially constant, whereas in the time-periodic

approach, the reference pressure is determined from a 1-D wave propagation model. The 1-D pressure distribution is a

more accurate approximation for the pressure distribution inside 3-D geometries than a constant pressure, especially for

geometries with a high length/radius ratio. Test computations performed using the SCAFSI method on cerebral and

abdominal aortic aneurysm geometries show improved convergence properties, without requiring a significant increase

in computational demand. However, no results are shown for geometries with a high length-to-radius ratio, which is the

focus of this study.

For the FSI-computations performed on the bifurcating geometry, no significant differences arise for the different

coupling methods, which indicates that the change of pressure distribution on the vessel wall due to the 3-D flow

phenomena is too small to significantly influence the vessel wall motion. Also, for the curved vessel, the differences

observed are probably more a result of the high length-to-radius ratio, than of the 3-D flow phenomena due to the

curvature. Consequently, it can be concluded that the advantage of the time-period coupling method with respect to the

decoupled method will primarily show for geometries with a high length-to-radius ratio.
6. Conclusion

The time-periodic weakly coupled method presented in this study enables the modelling of FSI in long compliant

vessels. This is a problem for weakly coupled methods based on timestep-wise coupling. Flow through straight

compliant vessels with a length up to 60 times the radius is modelled successfully, whereas weakly coupled methods

based on timestep-wise coupling only permit a length-to-radius ratio of 10. The simulations presented in this study show

that the time-periodic method can be a valuable tool in the simulation of blood flow in arteries.
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